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Abstract In 1985 Rosengren conjectured that the critical point of the symmetric, simple cubic 
(sc) Ising model is given by uC _= tanh(f/l/lgT,) = L,R _= (43 - 2)cos(~/S). 'This guess is 
examined in the context of attempting to construct the f i l l  critical polynomial P3(vr,  vy. nz), 
with a root uc(Jx ,  J,., Jz), for the anisotropic sc king model with couplings J,, Jy  and Jz. It 
transpires that UR is a surd which satisfies R ( v 2 )  = 0, where R ( x )  is a quartic polynomial with 
integralcoefficients; but R(uz)  is apoorcandidate for P3(a. U. v )  sinceit does not display various 
'nice' properties embodied in the critical polynomial Pz(ux, U,) for the square, m king lattices. 
Methods for constructing nice polynomials Qx(v,, U,., v z )  that provide excellent appmximations 
for U, and for UR are demonstrated. However, scaling arguments, etc. for the dimensional 
cmssover induced when, say, I, -+ 0 cast doubt on the existence and nature of the sought-for 
critical polynomial 4. 

1. Introduction and summary 

In 1944 Onsager [l] .presented his exact solution of the two-dimensional Ising model 
with nearest-neighbour interactions on a square lattice (in zero magnetic field): if spins 
si, s j ,  . . . = 5 1  occupy each lattice site, then nearest-neighbour bonds parallel to the x and 
y axes each contribute a term J,sisj and JYsksl, to the total Hamiltonian. In subsequent years 
many authors [2-6] attempted to solve or, at least, guess exact answers for the corresponding 
three-dimensional Ising model on a simple cubic lattice with the additional couplings J,s,s,, 
for bonds parallel to  the z axis. Difficulties were soon appreciated see, e.g., [7]. Thus 
Onsager showed that the crucial contribution to the free energy per spin for the square 
lattice (J, = 0) could be written [1,8] 

where, with A = x ,  y, z ,  one has 

C, =cosh2K, SA =sinhZK, KA = JA/ksT .  (2) 
A natural generalization is to add a term S, sin @ in the argument of the logarithm in (I), 
etc. and to perform a further integration [2]; however, it was found that this fails at a rather 
low order of expansion in powers of the KA. 

Less ambitiously one may seek an equation for the critical point of the three-dimensional 
model. The onIy singularities as a function of T of the double integral in (1) arise from 
the vanishing of the argument of the logarith, that is possible only when e = 4 = 0. In 
terms of the natural, high-temperature counting variables [SI 

u=tanhK, u=tanhK, and w = tanh K, (3) 
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the logarithmic argument then reduces to a simple rational function decomposable into 
quadratic factors. (Of course we set w = 0 for the two-dimensional situation.) One of the 
factors is simply 

Pz(u, U) = 1 - U  - U - uu. (4) 

(Some others simply entail replacing U by -U and U by -U,) 
It now follows that for ferromagnetic couplings, JA > 0 (to which, for the square 

and sc lattices, we may restrict attention with no loss of generality) the vanishing of the 
polynomial P&, U) specifies the critical point of the square lattice Ising model for general 
JJJ,. Thus, in the one-dimensional case with, say, Kx = U = 0, we find U, = tanh Kc = 1 
implying Kc = CO or kBTc/J = 0 (Jy = J) which, of course, is the correct answer first 
found by king [SI. For the symmetric square lattice with U = U we recapture Onsager’s 
famous result 

U, =A- 1 =0.414211.. or K ,  = i ln ( l+&)  (5) 
corresponding to kBT,/J = 2.269 18..  . [l, 81. 

We remark that the critical polynomial (4) also arises naturally from the self-duality of 
the planar Ising model at criticality [8]. Furihermore, if &(T) is the inverse of the true 
range of correlation for decays parallel to the x axis above T,, one has 18-IO] 

(6) 

where a is the lattice spacing while, on the right-hand side, &(T) denotes the interfacial 
tension of a domain wall parallel to the x &s below T,. The criticality conditions K ~ ( T  -+ 
T:) + 0, &(T + T) + 0 lead directly back to the critical-point equation P&, U) = 0. 
As noted originally by Temperley [ I l ,  121, powers of the factor u ( l  + u)/(l - U) have a 
natural interpretation as generating functions of directed lattice walks that move up or down 
the y axis but advance only parallel to the positive x axis. It follows on physical grounds 
from (6) that for any ratio of JJJ, ,  the.polynomial P&, U) decreases monotonically from 
Pz(0,O) = 1 and vanishes, for the first time, at the critical point (uc. uc). (Of course, this 
can also be easily verified numerically.) 

The natural question now is: ‘Can one find the polynomial, P ~ ( u ,  U, w), whose vanishing 
specifies the critical points of the anisotropic, three-dimensional, sc king model? Note, 
first, that the premise of the question may well be false! Indeed, as discussed in section 4, 
the critical points of the truly three-dimensional models (with U, U and w all non-zero) 
may not be the root of any polynomial. Npe,&eless, it is tempting to hunt for a critical 
polynomial even if one is prepared to find that it must be of infinite order! 

One such search was, in fact, reported in 1985 by Rosengren [I31 who based his study 
on the construction of walk generating functions [11,12] as inspired by the Kac-Ward 
approach to solving the planar Ising model (7,141. Rosengren showed that a certain ‘natural 
extension’ to d = 3 dimensions was false but, at the same time, he advanced the conjecture 
that the critical value U, = tanh K, for the symmetric simple cubic model (U = U = w) was 
equal to 

1 + U  

1 - U  
exp(-Kxa) =U- = exp(C,a/kBT) 

UR = (6 - 2) cos(ir/8) = 0.218 098 3727. (7) 
It is not unfair to say that the basis for this guess remains somewhat obscure: Rosengren 
did sketch an argument suggesting that ,a relevant class of weighted lattice walks with no 
backsteps would yield the factor 8 - 2  [13]; but the second factor in (7) was then selected 
to match various critical point estimates based on series and Monte Carlo studies published 
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in 1981-84 [15-181: these estimates varied from U, N 0.218085 up to uc > 0.218110 
which nicely bracket UR! 

In the last decade further estimates of U, (for the symmetric model have become 
available [19-231, many being more precise (and, one hopes, more accurate). With further 
computational developments still in view, Rosengren’s conjecture has attracted renewed 
attention [24]. Accordingly, it seems appropriate to bring it under some theoretical scrutiny: 
that is the object of this paper. 

Explicitly, it transpires that UR can be expressed wholly in terms of quadratic surds since 

(8) 

(9) 
which has integral coefficients rk. However, R(u2) is a poor candidate for the desired 
critical polynomial, &(U. U, U), in the symmetric case (U = U = w) since it has a second 
root, U; which is smaller than UR N U,; thus R(u2) varies non-monotonically when U 
rises from 0 to uR-. In other words it does not mimic the natural properties of the d = 2 
polynomial, &(U, U), discussed above. Furthermore, since R(u2) lacks any linear term, it is 
hard to envisage how it might derive from some three-variable polynomial, say &U, U, w), 
which would yield the appropriate d = 2 factors, &(U, w), Pz(w. U) and &(U, U), when, 
respectively, U ,  U or w vanished. 

On the other hand, in section 3, it is shown that one can systematically construct 
putative critical polynomials, Q k ( u ,  U, w), of appropriate symmetry, which (a) have integral 
coefficients, (b) reduce to &(U, w). etc, when U. U or w vanishes, that (c) decrease 
monotonically as U, U and w increase to the locus of zeros and (d) yield (approximate) 
values for U, (when U = U = w) which match the numerical estimates with essentially the 
same precision as does UR. 

cos(x/8) = fJ(2 + 2 4 .  

Thence one finds that UR is a root of a polynomial 
4 6 8 R(u2) = 1 - r2u2 - r4u - r g u  - r g u  

Explicitly, the sixth-order polynomial 

& ( U ,  U ,  W )  = 1 - U  - U  - W - U U - U W  - W U  - 18UUW - 2 u U W ( U f U +  W) 

-uuw(u2 + U 2  + w2 + uu + uw + wu) - juuw[uuw - (U + U)W2 

-(u + W)UZ - (w + u)uZ] (10) 

(11) 

UF = 0;2180980744. (12) 
which is about 1000 times smaller than 

The remarkably close correspondence of UR and u p  is partly accidental: indeed, if the 
of u6 in (1 1) is replaced by one of the closest integers, 2 or 3, the deviations 

clearly satisfies the criteria (a), (b) and (c); furthermore, the smallest root of 
2 &(U, U, U) = 1 - 3 U  - 31, - 18U3 - 6U4 - 6U5 + ;U6 

is found to be . .  

But this differs from UR by only about 1.7 x 
the best precision currently claimed for uc estimates! 

coefficient 
from UR increase in magnitude to 

Au N -7.485 x or + 7.490 x (13) 
respectively. These are comparable to the deviations of recent estimates from UR: see 
table 1. Nevertheless, the good approximation of UR by up clearly illustrates the dangers 
of being overly impressed even by extremely close numerical coincidences if they are not 
backed by respectable theory. Of course, one must not now claim that uF is  likely to be 
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the true value of uc; nevertheless, VF could reasonably be regarded as a better guess for the 
exact value than V R !  However, the method of construction illustrated below (see table 1) 
demonstrates that the various current estimates of v,, and others likely to be forthcoming in 
the next decade, can probably all be matched within their numerical precision by the roots 
of 'nice' polynomials like (lo), although perhaps of higher order if one wants such simple 
coefficients. 

Table 1. Comparison of simple-cubic-lattice critical point estimates and conjectural values. The 
last column lists the values of AV = U:"'- ~ l g  multiplied by lo6, where ve = tanh(J/kBT,) and 
Rosengren's surd UR is given in equations (7) and (8); the polynomials Qx(u. U, w;  (pi)) are 
specified in the text. 

Source of estimatdconjecture 106Au 

Gumann r19.231 -5.313 
Liu and Fisher [ZO] 
Ferrenberg and Landau [U] (EL) 
Baillie et a1 [23] (BP) 

Qx(u, U. v;  (ml) 

k = 3: RI = 13717 z= 19.571 428 

-27.37 + 10.00 
0.827 i 2.6 

-6.328 * 3.8 

-4.926 
724137 z= 19.567567 0.715 

3.7.41144" 19.568181 -0.183 
1.58513' II 19.567901 0.227 
2446/S3 II 19.568000 0.083 

k = 4: pi = 12f5 z= 2.400000 -3.255 
= 18. 67/28 2 2.392857 3.502 

103143 II 2.395349 1.144 
139158 z= 2.396551 0.0073 
151163 II 2.396826 -0.252 
149162 "2.403059 -6.306 

k = 5: po = 18, pr = 2. p2 = 1 -37.40 
pi = 10/11 0.016 

Finally, however, the caveat concerning the existence of the critical polynomial 
P~(u, v ,  w) must be kept strongly in mind. In particular, section 4 considers thedimensional 
crossover in critical behaviour that must occur when, say, U) + 0. General scaling 
arguments, explicitly verified for spherical models (for all d > 2). indicate that U&, w) 
varies non-analyticdly with U) (at w = 0); that is inconsistent with the existence of 
simple critical polynomials of the sort illustrated above (and in section 3) since these 
allow a Taylor expansion of vc(u, w) in powers of w. Nevertheless, for the king model, 
a degenerate crossover scaling function (diverging at infinite argument) could still allow a 
critical polynomial. Moreover, because the susceptibility exponent y of the two-dimensional 
king model is a rational number, one can even construct model critical polynomials with 
roots depending non-analytically on w(+ 0); but these cannot have all the nice properties 
listed above. 
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2. Rosengren's surd 

It is well known that higonometric functions of angles which are rational fractions of x 
can be expressed as the roots of algebraic equations. In the present case one merely needs 
to (i) write 

(ii) note that E** = - 1 ,  and (iii) calculate successively the squares of i, (4t2 - 2) and 
[(4tZ - 2)2 - 21. The last square yields the quadratic equation 

for t2  from which (8) follows immediately. 

t cos(rr/8) =-f(c + E - ' )  with B = e"' (14) 

8t4 - 8t2 + 1 = 0 (15) 

The definition (7) then gives 

4 4  = (9 - 4&(2 + A) = 18 + 9A - 8-45 - 44%. (16) 
Clearly, all higher powers (44)' can equally be expressed as linear combinations of 1, A, 
,.6 and q% with integer coefficients: Between the four equations for k = 1,"2,3 and 4, 
one may thus eliminate the three surds. This leads to a quartic equation satisfied by U; of 
the form (9) with the integral coefficients 

rz = 144 r4 = -2640 rs = 1152 rg = -64. (17) 
Because each root containing and ,.6 must be paired with like roots with -A and 
-A it is clearthat no rational algebraic equation of lower degree can have UR as a root. 

What proves significant about the coefficients (17) is the large value of r2 (relative 
to l/u: Y 4.6) and the subsequent negative sign of r4 (and of ra). By evaluating the 
corresponding polynomial, R(u2), for increasing U one finds that it drops rapidly from 
R(0) = 1 and first vanishes at U = U; Y 0.09034; this value is, of course, less than 
i u c .  Then R(u2) drops to a minimum, R, N -0.9876, at U Y 0.1666 before rising and 
vanishing again at U = UR. For larger U < 1 (which is all that is physically relevant) 
R(uz) rises increasingly steeply to R(1) = 1409. As explained in the introduction, the 
absence of a term linear in U and this non-monotonic behaviour is quite unlike what is 
seen in the exact critical polynomials for two-dimensional Ising models which, in addition, 
remain of magnitude around unity for all, 0 < U ,  U ,  w < 1. It seems unlikely, therefore, that 
Rosengen's polynomial can resemble the true critical polynomial (should one exist). 

Let us, nonetheless, compare Rosengren's surd with some more recent estimates of U, 
for the simple cubic king lattice. Table 1 lists the deviations from uF of uc estimates adopted 
in studies by Guttmann [19,23], Liu and Fisher [ Z O ] ,  Ferrenberg and Landau 1211 and Baillie 
and coworkers [23]. The Lid and Fisher series-based value for U, lies significantly below 
the other estimates. It should be borne in mind, however, that~workers using Monte Carlo 
methods [18,21,22] typically quote only 'onesigma' uncertainties so that one must not be 
surprised to find the correct value lying at a distance two or three times further from the 
quoted central estimate. In all the approximate methods, systematic errors are difficult to 
assess with confidence. However, one sees from table 1 that the Ferrenberg-Landau (FL) 
estimate is rather close to up: but, as will now be shown, it is also close to the roots of 
other polynomials ,which seem much better candidates for P~(u, U, w) .  

3. Plausible critical polynomials 

Consider polynomials of the form 
Q~(u, U,  W ;  (pi]) = 1 - U  - U - w - uu - uw - w u  - U V W & - , ( U ,  U ,  W ;  ( p i ] )  (18) 
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for k > 2, where SI is a symmetric polynomial of degree 1 (with S-1 0) having 
rational coefficients pi .  Clearly Q&, U, w ;  ( p i ] )  reduces directly to the appropriated = 2 
critical polynomial, Pz(u, U), etc, for all k whenever U, U or w vanish. One may now 
attempt to choose the pi  so that the closest root to'the origin of Q k ( u ,  U. U) represents 
an acceptable approximation to ut; then &(U, U ,  w )  should be a reasonable candidate for 
&(U, U ,  w ) .  More concretely one might try to select Sl({pi))  so that the closest root is a 
good approximation to Rosengren's surd, U R .  The form of (18) and the value of UR virtually 
ensure the desired monotonic decrease with U ,  U, and W .  

The first non-trivial cases to examine are the cubic approximations for 4 with k = 3 
and So e PO. If one could choose po equal to 

(19) 
the root of Q3(u ,  U ,  U) would be precisely UR. Unfortunately POR is not rational: but 
merely by multiplying the fractional part of pOR by successive integers and inspecting the 
products, one can find rational fractions PO, with relatively small denominators say, qo, 
that provide acceptable approximations to POR. The polynomial qoQ,(u, U ,  w ;  P O )  then has 
integer coefficients and a root approximating UR. 

This process is illustrated in the second section of table 1. Note: (i) the lowest 
denominator, qo = 7, yields a value close to the Baillie et a1 (BP) estimate for U,; (ii) 
the denominator qo = 37 leads to a value that is closer to the central n. estimate than is 
uR! Finally, (iii) the denominator qo = 125 yields a root differing from UR by less than 

Of course there is no need to stop at k = 3. In light of the sixfold symmetry of the 

POR = U R ~ Q Z ( U R .  UR, UR) 2 19.568 0574 

1 x 10-7. 

simple cubic lattice and the value of POR, it is natural for k = 4 to try 

SI = p o + p l ( u + u + w )  (20) 
with po = 18. In analogy to (19) one then finds p I R  --2.3965599 and obtains the family 
of quartic polynomials shown in the third part of table 1: (i) the denominator ql = 5 yields 
a root close to the mean of the BP and LF estimates: (iii) ql = ~ 4 3  yields a root closer to 
the LF central value than is U& (iii) the root for denominator ql = 58 differs from UR by 
only about 0.7 x On the other hand (iv) the central BP estimate is matched to within 
2.5 x 

If one dislikes large denominators one may examine quintics. To that end keep po = 18, 
adopt p~ = 2 and consider 

Then (i) the integral value p2 = 1 generates a root within the range of the Liu-Fisher 
estimate: see the last section of table 1. Further, (ii) the simple fraction p z  = 10/11 
reproduces UR to within Au = 2 x 10". 

In sixth order one can take pz = 1 and write 

by q1 = ~ 6 2  see the last entry in the third part of the table. 

S 2 = p o + p l ( u + u + w ) + p z ( U ~ + U 2 + W 2 + U U + u U + w U ) .  (21) 

S3@, U, w )  = &(U, U, w) + P3C3(U. U, w )  (22) 
where C3 is a homogeneous polynomial of degree three. As illustrated already in (10) 
above, the simple assignment p3 = 4 and a judicious choice for C3 with coefficients +l,  
leads to a root differing from UR by less than 2 x Other, perhaps less appealing 
choices for C3(u, U ,  w )  that yield the same result (since C3(1, 1 , l )  = -5) are 

-5uuw, -(2uuw + U 2  + U 2  + w2) 

and 

4uuw - (U + U  + w)(12 + U2 + U*). 
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If one insists on an integral value for p3 one could instead take p3 = 1 and try, for 
example, 

~ 3 ,  = uuw -U’ - u3 - w3 or C3b = -(U3 + U3 + w3) (24) 
but, as shown in (13) above, this entails relatively large deviations of the nearest roots from 
UR. On the other hand, at the same order, the integral assignment 

po = 15 p~ = 6  pz = 2  and p3 = 1 (25) 

c3, = UUW + (U + U)WZ + (U + W)UZ + (w + u)uZ (26) 

with Cj(1, 1, 1) .= 7, which can be realized by 

yields a root with Au = -1.603 x lo-? this falls within the FL range (see table 1). 
As a final example, the seventh-order polynomial &(U, U ,  U) constructed with 

s4 = 1 8 + 2 ( u + u + W ) + U U + U U + W U + 2 ( u + u ) W ~ + 2 ( v + W ) U ~ + 2 ( w + U ) u ~  

+Z(u + U + W)(UUW + U3 + U3 + w3) (27) 
leads to uc 2: 0.218098687 which exceeds UR by~only 0.315 x. 
lies closer to the FL estimate than does UR (see table 1). 

4. Why there may be no critical polynomial 

Can one can decide theoretically if the hypothesis that a critical polynomial exists for the 
simple cubic Ising model with general,(& U ,  w) is acceptable? To approach this question, 
suppose Jz and, hence, w is small (while U ,  U > 0). If p3(u ,  U ,  w) exists in the natural form 
(18) it can be written 

and thus once more 

&(U, U, w )  = 1 - U  - U - uu - wZ(u, U ,  w )  (28) 
where Z(u, U. w) is a polynomial with leading behaviour 1 +u+u+pouu[l +O(u, U ,  w)]. 
For convenience let us regard U as a fixed parameter; then it follows from (28) that the 
critical value U&, w) can be expanded as a Taylor series in powers of w. This seems very 
reasonable; but is it? 

When Jz = w = 0, the susceptibility per spin of the d = 3 sc lattice must diverge as 

X ( U ,  U. 0) C+(u)/rn (29) 

5(u, U, w) = U&, w) - v (30) 

when the deviation from, criticality, defined conveniently as 

approaches 0 from above: the exponent fi = $ is the well known susceptibility exponent for 
the d = 2 Ising model; C+(u) is the critical amplitude. (See e.g., [ZO].) On the other hand, 
for Jz,  w P 0 the divergence of x ( u ,  U ,  w )  when t + Of will be controlled by the d = 3 
exponent y3 = 1.2385 [ZO]. If J:, w < 0 the model will represent a metamagnet, ordering, 
beneath criticality, with ferromagnetic ( x ,  y) lattice layers stacked antiferromagnetically; in 
this case x ( u ,  V ,  w) will no longer diverge: however, it will exhibit a Y’-~ singularity with 
(Y N 0.105, when t + O+ where r (u ,  U ,  -w) = r(u,  U ,  w )  (by the symmetry of the sc 
Ising model in zero magnetic field under Jz -+ -J,). 

Said in other words, the model (for fixed U) displays a bicritical point in the (U, w) 
plane at [U = U&. 0), w = 01 at which two distinct critical lines meet [25,26]. Scaling 
and renormalization group principles then assert that 

x ( u ,  U ,  w )  F;: c+(u)ro-d”X(w/t$ (31) 
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when w and TO(U) 

while the crossover scalingfunction has a normalized expansion 
~ ( u ,  U, 0) become small. Here 4 is the appropriate crossover exponent 

X ( x )  = 1 + x , x +  ... (32) 

[25-271. For this dimensional crossover the exponent 4 is known to be 4 = y2 = [27]; 
this can be seen quite generally for such a layered king lattice by computing ( a x l a w )  at 
w = 0 and noting that it is proportional to [x(w = O)]* - 1/.,'". 

The d = 3 divergence for w > 0 is normally embodied in the scaling function which 
varies as 

(33) 
when x -+ xc- with 0 c xc c w [25,26]. It follows from this that (& = &U&, w)] % 

w / x c  so that the critical locus for small w must vary in singular fashion as 

X ( x )  = X , / ( X ,  - x)n 

U&, w ) = u c ( u , o ) - ( w / x ~ ) ~ J ~ + " ' .  (34) 

For bicritical points as observed in anisotropic antiferromagnets in a uniform external field, 
the analogous non-analytic dependence of the critical locus with exponent 114 has been 
verified experimentally [26,28,29]. Evidently, the appearance of the power w4/7 in (34) is 
quite inconsistent with the Taylor series expansion for U&, w) implied by the existence of 
a critical polynomial P~(u, U, w) as in (28). 

It would appear, therefore, that the considerations of the previous section are quite 
empty! But this is overly pessimistic on at least two scores: first, even if no full critical 
polynomial 4 ( u ,  U ,  w) exists, it is possible that there is a critical polynomial, say P:ym(u), 
with a root U, in the symmetric case, U = U =w; second, the crossover scaling function 
may embody the y3 divergence only in the limit x, = w. In that case to(u)  in the scaling 
form (31) must be replaced by the nonlinearscalingfeld 

' 

?(U, U ,  w) = F3(u, U, w) 2 0 (35) 
where, even if p3 is not a polynomial, it serves the same role as a critical polynomial, being 
analytic in U, U and w through and above the critical locus U = U, but vanishing when U 
approaches U,. Then, since 4 ='yz, the correct d = ~ 3  behaviour for w > 0 is ensured by 

x -+ +w. (36) 
(It might be remarked parenthetically that even when x, < CO and (33) applies, the scaling 
form (31) holds over a broader range if ro and w are replaced by appropriate nonlinear 
scaling variables 7 and W.) 

Can one choose between the expected scaling option (31), forbidding a natural critical 
polynomial like (28), and the special scaling form (36) which allows one? One possibility 
is that careful numerical studies for small w might be able to detect the presence of a w4J7 
power provided the critical parameter x,, is not too large. Beyond that the spherical model 
[30] should provide some guidance. 

Accordingly, consider the spherical model on a d-dimensional hypercubic lattice with 
couplings 

x = x  .(n-n)ln as m 

JA = i l ~ J 0  with 70 = 1, %I = r (37) 

where h = 0, 1, . . . , d. The critical point is given by [30] 
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where d' = d - 1 while 

When 5 -+ 0 (so Jd vanishes) the lattice decomposes into uncoupled d'-dimensional layers 
with a critical point given by K t ( 1 1 ,  . . . , qd,), where we suppose none of the qA vanish 
for h < d'. Since one has F 710: for small 0, the integral defining K,"' converges 
provided d' > 2, which we also suppose. 

Now we may write a formal Taylor series for K,d(<) by expanding (r + <A)-'  in 
powers of 5 in (38). This yields 

where the coefficients have the form 

The first integral factor here converges for all s; however, the d'-fold multiple integral 
diverges at small 0, whenever s > id  - 1. It follows that for any d. however large, K,d(<) 
does not have a Taylor series expansion in powers of <. Thus, the spherical model for 
d > 2 cannot have a natural critical polynomial like (28). 

For those who prefer a more explicit demonstration, the appendix examines the case 
2 c d < 4, for which the layer critical behaviour is nonclassical with susceptibility exponent 
yd, = 2/(4 - d') (and a logarithmic factor appearing when d' = 4). It is shown that 

K,d(<) = K,d(O) - H ( V l . .  . . , qd.)<"# + . . . (42) 

where 4 = yd, while the coefficient H is a product of explicit (non-vanishing) integrals: 
a factor In 5 appears when d' = 4. This result is evidently in full accord with the general 
scaling analysis presented above. This behaviour of the spherical model, which is, of course, 
just that of the general n-component vector-spin model in the limit n -+ CO, thus suggests 
that the king model (n = 1) obeys (34) and so does not have a natural critical polynomial 
like (28) in variables analytic in the JA. 

Nevertheless, one can still salvage the possibility of a critical polynomial if, first, one 
notes that I/@ = 4/7 is rational and, second, one relaxes the 'naturalness' assumption 
embodied in (28)! Specifically, consider the symmetric polynomial of degree 22: 

Q ~ ~ ( ~ ,  U ,  w) = u4u4(1 - U - U - 4 7  + u4w4(1 - U - w - uw)7 
+w4u4(l - w - U  - wu)' - bu4u4w4 (43) 

which vanishes as U, ,U, w -+ 0. Note that setting w = 0 yields a polynomial in U 
and U with four many-fold repeated roots, namely, U = 0, U = 0, and the desired roots 
of ,the d = 2 critical polynomial P ~ ( u ,  U). For simplicity let us take U = U so that 
&(U,  U) = (U - UO)(UI - U). with uo = & - 1 = u,(w = 0) and U ]  = -(1 +A), and 
attempt to expand about U, = uo in powers of w. Equating Qn to zero, rearranging and 
taking the real seventh root yields 

1 - 2v - uz = ( w / u ) " ~ [ ~ u ~  - 2(1 - U - w - U W ) ~ ]  (44) 

(45) 

whence one directly obtains the expansion 

= uo - c ( q u o ) 4 f l t ~  + 0 ( ~ ~ / 7 ) 1  
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with, for sufficiently large b, the positive coefficient 

= V?[bv,4 4 - ~ ( 1  - v0)731/7.  (46) 
Hence, at the cost of sacrificing the nice monotonicity properties of the putative critical 
polynomial, we have been able to achieve consistency with the singular scaling-law 
expansion (34). 

In conclusion, then, we have been able to propose a goodly number of candidates for 
the critical polynomial of the simple cubic king model supposing that it exists! These 'nice' 
polynomials reduce appropriately to the exact two-dimensional forms and they approximate 
the symmetric simple cubic critical point rather well; in addition they have an attractive 
monotonicity property. It seems likely, however, that such nice polynomials are ruled out 
by the singularity structure required by the scaling theory of dimensional crossover. If 
a simple-cubic critical polynomial exists at all, therefore, it probably cannot have all the 
natural and pleasing features found in the two-dimensional king model. 
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Appendix. Dimensional crossover in the spherical model 

This appendix elucidates the variation of the critical point of a d-dimensional hypercubic 
spherical model with coupling parameters (37) in the limit that 5 = J d / J o  + 0 for 
2 c d' d - 1 < 4 [30]. Following the explicit formula (38) consider the derivative 

and recall that r varies as 
5 + O+. Since the divergence arises from small 0% we set 

q,$ with 7% > 0. It follows easily that D(5) + 00 as 

-.hipA = z n J Z @ h  ~ (qA > 0) (A21 
which, when 5 + 0, yields 

d-I where = 
For d - 1 < 4 the overall @ integral converges at 00 and so one may take 5 -+ 0 in the 

integration limits which then become independent of 0. Since A(@ is positive and varies 
as 02, while d > 3, the 0 integral always converges and cannot vanish. If Cd is the area of 
a unit sphere in d dimensions we thus obtain 

& while the limits on the $A integrals are &4qi/4<A(0). 

as 5 + 0, where the coefficient is 
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The observation that f (d  - 5) = l/y,~, - 1 and integration with respect to 5 leads to the 
result (42) with an explicit, non-zero expression for the coefficient H .  

integral in (A5) diverges logarithmically at CO. Then 
the integration limits in (A5) can no longer be set to M; rather, they lead to an upper 
cutoff in (A5) varying as ( - I / *  which then leads to a factor I In ( ~ l  in the result (A4) and, 
correspondingly, in (42). 

In the case d - 1 = 4 the 

References 

[l]  Onsager L 1944 Phys. Rev. 65 117 
[2] Maddox M 1952 ChongemenU de Phases Soci6t6 de Chimie Physique (Paris: Presses Universi-s de 

[3] Murray F J 1952 Ann. Mark 55 250 
[4] Polyakov A M 1981 Phys. Lett. 103B 211 

Itzykson C 1982 Nucl. Phys. B 210 VS61 477 
[SI Yukhnovs'kii I R 1989 R i p .  Nuovo Cimenro 12 

France) p 226 

[6] Kossakovski A 1992 open sys. Information ~ y n .  1 (I) i i s ;  1992 o p e n  SYS. fq%rmation DYE, 2 (2) I; 19% 
Open Sys. Informtion Dyn. 2 (3) 1 

[7] Sherman S 1960 J.  Math. Phys. 1 202; 1963 J. Math. Phys. 4 1213 
Distler J 1992 Nuci. Phys. B 388 648 

[8] Domb C 1960 Adv. Phys. (Phil. Mag. SuppLJ 9 149 
[9] Fisher M E and Burford R J 1967 Phys. Rev. 156 583 

[lo] Flsher M E 1969 1. Phys. Soc. J o p m  SuppL 26 87 (Pmc. IUPAP Con! on Star. Mech., Kyoto. 1968) 
[ l l ]  Temperley H N V 1952 Proc. Comb. Phil. Soc. 48 683 
[12] Fisher M E 1967 Phys. Rev. 162 480 
[13] Rosengrrn A 1986 1. Phys. A: Math Gen. 19 1709 
[14] Kac M and Ward J C 1952 Phys. Rev. 88 1332 
[15] Zim-Jusrin J 1981 J. Physique 42 783 
[I61 Gaunt D S 1982 P h e  T?onsition3-Carg&e 1980 ed M Levy, J C Le Guillou and J ann-Justin (New York 

[ I 7  Adler I 1983 J. Phys. A: Math. Gen. 16 3585 
[I81 Pawley G S .  Swendsen R H. Wallace D J and Wilson K 0 1984 Phys. Rev, B 29 4030 
[I91 Guttmann A J 1987 J.  Phy.7. A: Moth. Gen. 21 1855 
[20] Liu A J and Fisher M E 1989 Physicn 156A 35 
[21] Femnberg A M and Landau D P 1991 Phys. Rev. 6 44 5081 
[22] Boillie C F. Gupu R. Hawick K A and Pawley G S 1992 Phys. Rev. B 45 10438 
[U]  Guamann A J and Enting I G 1994 J.  Phys. A: Mafh. Gen. 27 8007 
[24] Landau D P 1995 Private communication 

Adler J 1995 Private communication 
I251 Fisher M E 1975 AIP Con$ PNC.  24 'Ma@"m andMugnetic Mdcrids--1974' (New York AIP) pp 273-80 
[26] Fisher M E 1975 Phys. Rev. Leu. 34 1634 
1271 Aharony A 1976 Phme Transifionr and Critical Phenomena vol6, ed C Domb and M S Green (New York 

Plenum) p 217 

. .  
Academic) pp 417-18 

1281 Rohrer H 1975 Phw. Rev. k L r .  34 1638 
[29j King A R and Ro& H 1979 Phys. Rev. B 19 5864 
[30] Joyce G S 1972 Phase Transitions and Critical Phenomenn vol 2. ed C Domb and M S Green (New York 

Academic) p 375 


